Synthesis and Characterization of Novel Multifunctional Acylthiourea Polymers

Xue Pu MAO^{1,2}, Jin Feng HUANG², Zhi Fang DUAN¹, Zhi Yun DU¹, Zhi Shu HUANG², Lin MA¹, Lian Quan GU^{1,2}*

¹School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 ²School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510080

Abstract: Several thiourea polymers have been synthesized through the reaction of diamine with 1, 4- or 1, 3- benzenedicarbonyl chloride and ammonium thiocyanate by solid-liquid phase transfer catalysis of polyethylene glycol-400 (PEG-400). The polymers were characterized and identified by elemental analysis, IR, ¹HNMR and GPC. The multifunctional polymers have potential value as an ideal support for immobilized enzymes.

Keywords: Synthesis, acylthiourea polymers, solid-liquid phase transfer catalysis.

Disubstituted thiosemicarbazides exhibited wide spectrum of biological activities. Some of them have been used in pesticide and plant-growth regulators¹. Previous reports suggested that thioureas may have improved properties as hydrogen-bond donors, form more flexible hydrogen-bonding networks, and show lower tendency to self-associate than the corresponding urea analogues². Therefore, replacing the urea moieties in the polymers by thiourea is of interest to increase the extent of hydrogen bonding with the urea functionalized guests, compared to the native state³. All of these prompt us to synthesize a new series of polymers bearing both polyamides containing aryl rings and thiosemicarbazide moiety, with the object of obtaining new multifunctional polymers which would have value in the enzyme immobilization.

In this paper, we report for the first time the preparation of novel acylthiourea polymers containing aryl rings and thioureas by a convenient and efficient method under the condition of solid-liquid phase transfer catalysis using polyethylene glycol 400(PEG-400) as the catalyst⁴ (Scheme 1).

Synthesis was conducted as follows: a suspension of 1,4- or 1,3-benzenedicarbonyl chloride (5 mmol), ammonium thiocyanate (15 mmol) and PEG-400 (3% based on ammonium thiocyanate) in methylene chloride was stirred for 1 h at room temperature, then diamines (5 mmol) was added. The mixture was stirred for another 1 h, the yellow precipitate was formed. The reaction mixture was filtered and washed with water, ethanol and a small quantity of THF successively to remove the inorganic salts and unreacted monomers. The data of polymers were shown in **Table 1, 2**.

^{*} E-mail: cedc42@zsu.edu.cn

Scheme 1

$\begin{array}{c} CIOC \\ n \end{array} \xrightarrow{COCL a} S = C = N - C \\ n \end{array} \xrightarrow{O \\ b} S = C = N - C \\ n \\ c = N - C \\ c = N - C = S \\ c = N - C \\ c = N - C$	$\overset{c}{\longrightarrow}^{*} \underbrace{\begin{pmatrix} S & O & O & S \\ II & II \\ C^{-}NH - C & C \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $
1,2 a) 3n NH ₄ SCN b) PEG-400 c) n NH ₂ RNH ₂	3a-3f 4a-4g

1 , <i>p</i> -form		2 , <i>m</i> -form	
Compd.	R	Compd.	R
3a	p-phenylenediamine	4 a	p-phenylenediamine
3b	benzidine	4b	benzidine
3c	4,4'-methylenedianiline	4c	4,4'-methylenedianiline
3d	1,5-diaminonaphthalene	4d	4,4'-ethylenedianiline
3e	2,6-diaminopyridine	4e	1,5-diaminonaphthalene
3f	ethylenediamine	4 f	2,6-diaminopyridine
		4g	ethylenediamine

 Table 1
 IR and ¹H NMR spectra of the polymers

Polymer	$IR^{a}, \tilde{v(cm^{-1})}$	¹ H NMR ^b , δ ppm
3a	3167,3037,1675,1517,1261,1152	Not soluble
3b	3371,3155,1672,1528,1258,1147	Not soluble
3c	3227,3166,1673,1516,1260,1146	Not soluble
3d	3156,3101,1677,1527,1254,1154	Not soluble
30	2204 2108 1668 1525 1250 1140	12.85(s, 2H, NHCO), 11.74(s, 2H, NHAr),
36	5204,5108,1008,1555,1259,1149	8.04~6.28(m, 7H, ArH)
2f	2227 2140 1676 1521 1250 1162	11.66(s, 2H, NHCO), 10.86(s, 2H, NHAr),
51	5257,5140,1070,1521,1259,1102	7.99~7.91(m, 4H, ArH), 2.56~2.64(m, 4H,RH)
4a	3223,3036,1674,1515,1218,1143	Not soluble
4b	3223,3033,1674,1525,1340,1142	Not soluble
40	2227 2022 1675 1516 1248 1144	12.47(s, 2H, NHCO), 11.53(s, 2H, NHAr),
40	3227,3032,1073,1310,1248,1144	8.52~7.29(m, 12H, ArH), 3.85~4.16(m, 2H, RH)
44	2228 2022 1675 1515 1246 1141	12.49(s, 2H, NHCO), 11.58(s, 2H, NHAr),
4u	5228,5055,1075,1515,1240,1141	8.54~6.92(m, 12H, ArH), 1.25~1.40(m, 4H, RH)
10	2152 2024 1674 1522 1227 1150	12.61(s, 2H, NHCO), 11.82(s, 2H, NHAr),
40	5155,5024,1074,1525,1227,1150	8.04~6.71(m, 19H, ArH)
4 £	2170 2025 1670 1520 1220 1154	13.12(s, 2H, NHCO), 11.08(s, 2H, NHAr),
41	51/9,5055,10/9,1550,1229,1154	8.49~6.32(m, 7H, ArH)
4a	2227 2025 1680 1522 1222 1175	11.24(s, 2H, NHCO), 10.83(s, 2H, NHAr),
4g	3237,3023,1080,1322,1232,1173	8.30~7.97(m, 4H, ArH), 3.15~3.42(m, 4H, RH)

^a Infrared spectra were recorded on a bruker EQUINOX-55 infrared spectrophotometer with KBr disks. ^b ¹H NMR spectra were made on a UNITYINOVA 500 MHz instrument using DMSO-d₆ as solvent and Me₄Si as internal standard.

Polymer	Elemental analysis (calcd.) %		Polymer Elementa		Mole	ecular weight	a
	F	ound(Calculated	d)	Mn ^b	Mayb	۵Dc	
	С	Н	Ν	IVIII	IVI W	1.D	
3a	53.21(53.92)	3.51(3.39)	15.04(15.72)	/	/	/	
3b	59.85(61.09)	4.02(4.28)	12.39(12.52)	/	/	/	
3c	60.29(61.86)	4.23(4.06)	12.05(12.55)	/	/	/	
3d	58.42(59.10)	3.68(3.47)	13.10(13.78)	/	/	/	
3e	49.45(50.41)	3.85(3.79)	20.30(19.59)	/	/	/	
3f	46.01(46.74)	4.17(3.92)	18.96(18.17)	/	/	/	
4a	53.05(53.92)	3.75(3.39)	14.85(15.72)	/	/	/	
4b	59.04(61.09)	4.12(4.28)	12.64(12.52)	/	/	/	
4 c	61.11(61.86)	4.05(4.06)	11.81(12.55)	16584	26535	1.600	
4 d	61.44(62.59)	4.34(4.38)	11.81(11.78)	/	/	/	
4 e	58.66(59.10)	3.87(3.47)	13.08(13.78)	8158	8173	1.002	
4f	49.25(50.41)	3.75(3.79)	18.56(19.59)	2330	2908	1.25	
4g	45.89(46.74)	4.52(4.67)	16.96(17.32)	8341	8369	1.003	

 Table 2
 The elemental analysis and some molecular weight of the polymers

 a The molecular weight (4c, 4e, 4f and 4g) was determinated by GPC using THF as the solvent.

^b Mn and Mw are the number-average and weight-average molecular weight, respectively.

^c P.D is the polydispersity index of molecular weight distribution.

	Fable 3	The activity	of immobilized	enzymes
--	---------	--------------	----------------	---------

Immobilized enzyme	Polyphenol oxidase	Papain	Urease	Stomach protease
Obtained activity (u/g)	356	85	346	115
$E_{spe}(\%)$	72.5	46.7	73.5	52.4

The thirteen kinds of polymer were all nonsoluble in following solvents: methanol, ethanol, isopropylalcohol, ethylene glycol, acetone, ethyl acetate, methylene chloride, chloroform, benzene, *etc.*. **3e** and **3f** were soluble in dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) and pyridine. **4c-4g** were soluble in DMSO, DMF and pyridine. **4c**, **4e**, **4f** and **4g** were soluble in tetrahydrofuran (THF).

The test of the enzyme immobilization was as follows: support activation with 1 mL of glutaraldehyde (5%) was performed at pH 6.86 at room temperature for 90 min. After centrifugation at 12000 rpm for 5 min, the support was washed three times with distilled water and placed in contact with 500 μ L of the enzyme solution in 0.1 mol/L buffer at pH 6.86 at 4°C for two hours. The enzyme-support complex was washed three times with buffers to remove the free enzyme. The best results were gained using **4f** as the support. As seen in the **Table 3**, immobilized polyphenol oxidase, urease and stomach protease showed good activity (a_{imm}) and specific activity (E_{spe})⁵. The immobilized activity of papain is relatively lower probably due to enzyme was absorbed relatively weak by the polymers.

Xue Pu MAO et al.

Acknowledgment

This project is supported by the National Natural Science Foundation of China (Contract grant number: 29872061, 20032020).

References

- 1. G. Sridevi, R. P. Jayaprasad, R. K. Kondal, Synth. Commun., 1989, 19 (5), 965.
- 2. P. Buhlmann, S. Nishizawa, K. P. Xiao, Y. Umezawa, Tetrahedron, 1997, 53(5), 1647.
- (a) Y. Tobe, S. Sasaki, K. Hirose, K. Naemura, *Tetrahedron Lett.*, **1997**, *38*(27), 4791. (b) Y. Tobe, S. Sasaki, M. Mizuno, K. Hirose, K. Naemura, J. Org. Chem., **1998**, *63*(21), 7481.
- 4. X. C. Wang, L. Zhang, Y. X. Da, Synth Commun., **1999**, 29(23), 163
- 5. F. M. Bautista, M. C. Bravo, J. M. Campelo et al., J. Mol. Cat. B: Enzyme, 1999, 6(5), 473.

Received 23 August, 2004